Rician nonlocal means denoising for MR images using nonparametric principal component analysis
نویسندگان
چکیده
Denoising is always a challenging problem in magnetic resonance imaging (MRI) and is important for clinical diagnosis and computerized analysis, such as tissue classification and segmentation. The noise in MRI has a Rician distribution. Unlike additive Gaussian noise, Rician noise is signal dependent, and separating the signal from the noise is a difficult task. In this paper, we propose a useful alternative of the nonlocal mean (NLM) filter that uses nonparametric principal component analysis (NPCA) for Rician noise reduction in MR images. This alternative is called the NPCA-NLM filter, and it results in improved accuracy and computational performance. We present an applicable method for estimating smoothing kernel width parameters for a much larger set of images and demonstrate that the number of principal components for NPCA is robust to variations in the noise as well as in images. Finally, we investigate the performance of the proposed filter with the standard NLM filter and the PCANLM filter on MR images corrupted with various levels of Rician noise. The experimental results indicate that the NPCA-NLM filter is the most robust to variations in images, and shows good performance at all noise levels tested.
منابع مشابه
Adaptive non-local means denoising of MR images with spatially varying noise levels.
PURPOSE To adapt the so-called nonlocal means filter to deal with magnetic resonance (MR) images with spatially varying noise levels (for both Gaussian and Rician distributed noise). MATERIALS AND METHODS Most filtering techniques assume an equal noise distribution across the image. When this assumption is not met, the resulting filtering becomes suboptimal. This is the case of MR images with...
متن کاملMRI denoising using nonlocal neutrosophic set approach of Wiener filtering
In this paper, a new filtering method is presented to remove the Rician noise from magnetic resonance images (MRI) acquired using single coil MRI acquisition system. This filter is based on nonlocal neutrosophic set (NLNS) approach of Wiener filtering. A neutrosophic set (NS), a part of neutrosophy theory, studies the origin, nature, and scope of neutralities, as well as their interactions with...
متن کاملAn extended non-local means algorithm: Application to brain MRI
Improved adaptive nonlocal means (IANLM) is a variant of classical nonlocal means (NLM) denoising method based on adaptation of its search window size. In this article, an extended nonlocal means (XNLM) algorithm is proposed by adapting IANLM to Rician noise in images obtained by magnetic resonance (MR) imaging modality. Moreover, for improved denoising, a wavelet coefficient mixing procedure i...
متن کاملImage denoising substantially improves accuracy and precision of intravoxel incoherent motion parameter estimates
Applicability of intravoxel incoherent motion (IVIM) imaging in the clinical setting is hampered by the limited reliability in particular of the perfusion-related parameter estimates. To alleviate this problem, various advanced postprocessing methods have been introduced. However, the underlying algorithms are not readily available and generally suffer from an increased computational burden. Co...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Image and Video Processing
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011